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Abstract.
We investigate Bayesian and Maximum Entropy methods for doing inference under uncertainty.

This investigation is primarily through concrete examples that have been previously investigated
in the literature. We find that it is possible to do Bayesian and MaxEnt inference using the same
information, despite claims to the contrary, and that they lead to different results. We find that these
differences are due to the Bayesian inference not assuming anything beyond the given prior proba-
bilities and the data, whereas MaxEnt implicitly makes strong independence assumptions, and as-
sumes that the given constraints are the only ones operating. We also show that maximum likelihood
and maximum a posteriori estimators give different and misleading estimates in our examples com-
pared to posterior mean estimates. We generalize the classic method of maximum entropy inference
to allow for uncertainty in the constraint values. This generalized MaxEnt (GME) makes MaxEnt
inference applicable to a much wider range of problems, and makes direct comparison between
Bayesian and MaxEnt inference possible. Also, we show that MaxEnt is a generalized principle of
independence, and this property is what makes it the preferred inference method in many cases.

INTRODUCTION

We refer to the problem of inferring the state of the world given our prior knowledge
and observations (data) asinductive inference. We refer to the problem of assigning
probabilities to future observations, given the current state of world knowledge, as the
problem ofpredictive inference. The relationship between these types of inference is
shown in Fig. 1. Here, the estimation step is just a probabilistic weighting of some
function f of θ. For example, for a mean estimate,f (θ) = θ. Here we assume that
our prior state of world knowledge is represented by a joint probability density function
(pdf) over the state space. If we know the world state with certainty, then this joint
density is represented by a set of delta functions, and no further observations can change
it. More typically, we are less than certain about the world state, and so a pdf is the
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FIGURE 1. The Bayesian inference and prediction processes.
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appropriate representation, as it spreads our knowledge over all possible states, with a
density concentration where our knowledge is strongest.

In addition to summarizing our world knowledge in a pdf, we often wish to make
predictions about future observations, given this pdf. This requires that we assignpoint
probabilitiesover the set of possible outcomes of the observations. There are alternative
ways of extracting these point estimates from the state pdf, and one goal of this paper
is to show that even in common situations these alternative estimates can be radically
different.

To make these observations concrete, we consider a simple dice problem. We show
how to do Bayesian inductive inference for variants of this problem, then we show
that alternative estimating procedures can produce very different point probabilities.
Specifically, we consider Maximum A Posteriori (MAP); Maximum Likelihood (ML);
Posterior Mean (PM), and Maximum Entropy (MaxEnt). In summary, we find that MAP
and ML estimates are very similar, provided the prior density is relatively “flat”, but
that they both differ radically from the mean posterior estimate (PM). These estimates
represent the answer to different questions, so it is not surprising that they give different
results.

We next compare these estimates with those given by maximum entropy (MaxEnt).
We find that the “classic” maxent estimation procedure (CME) is only asymptotically
correct, because it does not take into account the uncertainty in the value(s) of the con-
tributing constraint(s). We show how to generalize the classic maxent procedure (GME)
to take this uncertainty into account, and then show the the MaxEnt estimates (classic
or generalized) can be radically different from all the other estimates (ML, MAP, PM).
This difference is due to the different assumptions embedded in MaxEnt. In particular,
MaxEnt makes the strong assumption that the constraints used arecomplete. That is, that
the constraints used are the only ones that are operating in the particular domain. If this
assumption is incorrect, the MaxEnt estimates can differ significantly from observations.
We show that independence assumptions areessentialfor doing practical probabilistic
inference, because without a strong prior belief in independence, there is never enough
data to estimate all the possible dependencies in real situations. . MaxEnt is a general-
ized principle of independence, and so is a useful tool for uncovering structure in data.
We believe the analysis in this paper solves the mystery of the relationship between
Bayesian and MaxEnt inference.

EXAMPLES

We explain our conclusions via a set of examples, where we state as clearly as possible
just what information is given and what is not. These examples are variants of those
introduced by Jaynes [1, 2, 3]. The goal in each case is to find what the given information
tells us about the unknown probabilities.

These examples are:

1. Face Counts GivenIn this case, the number of times each face comes up is given
as an integer,ni for the ith face of the dice. This example sets the stage for the
following examples.
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2. Number of Throws and Total Spot Count GivenOnly two pieces of information
are given:N, the total number of throws, andM the total number of spots observed.
Equivalently, we could giveN and the mean number of spots,M/N. The goal here is
to find what this limited information tells us about the unknown face probabilities.

3. Contingency Table DataWe consider a contingency table over four discrete at-
tributes having cardinalities (2, 2, 7, 3). We examine the two extreme cases: where
all cell counts are given, and where only some of the low order marginals are given.

For each problem we assume that no other information is available.

THE BAYESIAN SOLUTION OF EXAMPLES

We now develop a Bayesian solution to the above examples. In general, Bayes rule is:

P(θ |data, I) ∝ P(data|θ, I)×P(θ | I)
posterior ∝ likelihood× prior

whereθ is a set of model parameters1, I the background information, and the proportion-



this is given by the well known discrete multinomial probability:

P({n1 . . .n6} |~θ,N, I) =
N!

∏6
i=1ni !

6

∏
i=1

θni
i . (2)

∀i, ni ≥ 0, N =
6

∑
i=1

ni .

This likelihood is derived under the assumption of conditional independence of the
throws–i.e. we assume that:

P( f ace= i on next throw|~θ, f ace= j on any previous throw, I)
= P( f ace= i on next throw|~θ, I)

i.e. that the probability of the next face equalingi depends only on the intrinsic face
probabilities~θ, and not on previous throws. This conditional independence assumption
is sometimes expressed as the dice sequences being “exchangeable”–i.e. that the order
of the throw outcomes does not matter, only the total number of times the different
faces come up. This condition is also sometimes expressed by stating that thenis form
“sufficient statistics”, since they contain all the information required to determine the
likelihood (2).

Next, we express our prior knowledge of~θ as a joint pdf2, here denoted by ap rather
than aP. In this example we know very little about~θ and so our prior pdf must be very
flat, allowing for all possibilities. A mathematically convenient choice is the Dirichlet
distribution:

p(~θ |{w1 . . .wk}, I) =
Γ(W))

∏k
i=1Γ(wi)

k

∏
i=1

(θwi−1
i )δ(∑

i
(θi)−1), (3)

W ≡
k

∑
i=1

wi , ∀i, wi > 0, δ(x)≡
{

1; x = 0
0; x 6= 0 ,

wherek is the number of possible outcomes, 6 for a die, andΓ(.) is the well known
gamma function. This is a conjugate prior, so called because the resulting posterior has
the same form as the prior. It is a generalization of the Laplacian uniform prior, which
it reverts to when allwi equal 1. The magnitude ofW is effectively the total weight of
prior evidence, measured in instances~w. Theδ(·) term enforces constraint (1).

We can now combine the likelihood (2) and prior (3) to get the desired joint posterior
probability density:

p(~n,~θ |~w, I) =
N!

∏i ni !
Γ(W)

∏i Γ(wi)
∏

i
(θni+wi−1

i )δ(∑
i
(θi)−1). (4)

2 pdf = probability density function.
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Integrating over~θ, subject to (1), givesP(~n|N,~w, I), the data probability and normaliza-
tion constant for the specified model:

P(~n|~w, I) =
N!

∏i ni !
Γ(W)

∏i Γ(wi)
∏i Γ(ni +wi)

Γ(N+W)
. (5)

Division of (4) by (5) then gives the posterior probability density distribution for~θ:

p(~θ |~n,~w, I) =
Γ(N+W)

∏i Γ(ni +wi)
∏

i
(θni+wi−1

i )δ(∑
i
(θi)−1). (6)

Note that equations (3) and (6) are of the same form. Equation (6) is the general solution
to the Bayesian inductive inference problem represented by example 1, using conjugate
priors.

Both the joint (4) and posterior (6) are pfds because the given information (prior pdf
and~n) is not sufficient to pin down the face probabilities to point values. However, asN
gets large, the posterior density becomes increasingly concentrated around the true value
and in the limit becomes a delta function at the true~θ value. These joint and posterior
pdfs on~θ neither under nor over state our knowledge given the information that has
been used, and contain all the information necessary to answer many other questions.
For example, we might be interested in the marginal posterior pdf on some particularθi .
This is found by marginalizing over all the otherθ j .

p(θi |~n,~w, I) =
ZZ 1

0
∏

j
j 6=i

(dθ j) P(~θ |N,~n,~w, I) (7)

=
Γ(N+W) θni+wi−1

i (1−θi)N+W−ni−wi−1

Γ(ni +wi) Γ(N+W−ni −wi)

Note that this marginal pdf forθi could have been derived directly from the binomial
distribution given only the information~n and~w.

Moments are easily estimated from (7), allowing estimation of the central moments
or any other function of the moments. These moments are:

〈θ j
i |~n,~w, I〉 =

Z 1

0
dθi θ j

i p(θi |N,~n,~w, I)

=
Γ(N+W)
Γ(ni +wi)

Γ(ni +wi + j)
Γ(N+W+ j)

; (8)

=
j−1

∏
l=0

ni +wi + l
N+W+ l

; j > 0, j ∈ Int

In particular, with j = 1, the first moments are:

〈θi〉=
ni +wi

N+W
. (9)
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If we denote the number offuture occurrences of theith face byr i , and the total
number of future throws byR = ∑i r i , then the predictive probability3 of observing a
particular~r givenR,~n,~w, I is given by:

P(~r |R,~n,~w, I) =
Z 1

0
d~θ P(~r |~θ,R, I) p(~θ |N,~n,~w, I)

=
Γ(R+1)

∏i Γ(r i +1)
Γ(N+W)

∏i Γ(ni +wi)
∏i Γ(r i +ni +wi)

Γ(R+N+W)
; (10)

In particular, the predictive probability that in the next throw (i.e.,R= 1) theith face
will come up (i.e.,r i = 1 andr j = 0 for j 6= i) is obtained from equation (10), giving:

P(r i = 1|~n,~w,R= 1, I) =
ni +wi

N+W
. (11)

Note that (9) is the same as (11), showing that the probabilities of the next outcome
are identical to the mean of the corresponding posterior densities, without any reference
to utility/loss functions. Calculation of a (probabilistic) state ofknowledgegiven prior
knowledge and data, such as shown in equations (7) and (10), should not make any
reference to how wevaluethat state of knowledge, as expressed in utility/loss functions.
For this reason, we have never understood the popular approach to Bayesian estimation
that minimizes some loss function given the prior knowledge and data. In this case, use
of a loss function is not necessary, and conceptually suspect.

The above results, going back to Laplace and Dirichlet, are used in the following
sections.

The Bayesian Analysis of Example 2

As in the previous example, we seek the posterior pdfs for{θi}. However we are given
only N, the total number of throws, and eitherM, the total number of spots observed,
or m the observed mean number of spots per throw, wherem = M/N. Clearly, in this
example less information has been given than in the previous case: if there are any, there
are usuallymanyface count vectors~n such that:

N =
6

∑
i=1

ni ; M =
6

∑
i=1

ini . (12)

We denote by~nNM, the set ofall ~n that satisfy conditions (12).
The Bayesian analysis of this example proceeds as in the previous section. The

likelihood of observing any one of the~nNM is given by the multinomial equation (2).
The likelihood of observing a total ofM counts inN trials, given~θ, is then the sum of

3 See Fig. 1 for a schematic description of predictive probabilities
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likelihoods for all the~n of~nNM:

P(M |~θ,N, I) = ∑
~nNM

P(~n|~θ,N, I)

= ∑
~nNM

(
N!

∏6
i=1ni !

6

∏
i=1

θni
i

)
. (13)

For smallN, this sum can be done exactly [4]. Continuing as in example 1, assuming the
Dirichlet density (3) for the~θ prior, gives the following joint density and marginals:

p(M,~θ |N,~w, I) = ∑
~nNM

p(~n|~θ,N, I) P(~θ |~w, I), (14)

= ∑
~nNM

(
N!

∏6
i=1ni !

Γ(W)

∏6
i=1Γ(wi)

6

∏
i=1

θni+wi−1
i

)

P(M |N,~w, I) =
ZZ 1

0
∏

i
(dθi) p(M,~θ |N,~w, I)

= ∑
~nNM

P(~n|N,~w, I), (15)

= ∑
~nNM

(
N!

∏6
i=1ni !

Γ(W)

∏6
i=1Γ(wi)

∏6
i=1Γ(ni +wi)
Γ(N+W)

)

p(M,θi |N,~w, I) =
ZZ 1

0
∏

j
j 6=i

(dθ j) p(M,~θ |N,~w, I)

= ∑
~nNM

(P(~n|N,~w, I) p(θi |~n,~w, I)) , (16)

= ∑
~nNM

(
N!

∏i ni !
Γ(W)

∏i Γ(wi)
∏i Γ(ni +wi)θni+wi−1

i (1−θi)N+W−ni−wi−1

Γ(N+W−ni −wi)Γ(ni +wi)

)

where the forms on the right hand side are defined in equations ( 2, 3, 5, 6).
The posterior marginal pdf forθi , p(θi |N,M,~w, I), is then (16) over (15). The result

is an evidence weighted and normalized sum over the distributions induced by the
individual count vectors of~nNM. Expectations have exactly the same form:

〈 f (~θ) |N,M,~w, I〉=
∑~nNM

(
P(~n|N,~w, I) 〈 f (~θ) |~n,~w, I〉

)
P(M |N,~w, I)

. (17)

While these forms are conceptually simple, the sums generally prevent reduction to com-
putationally simple functions like (8). However the Laplacian version of the Dirichlet
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outcome 1

outcome 2

p(1,2,3)

FIGURE 2. The posterior density for the 3-faces die example with a mean spot count of 2.5, N = 60,
and prior weights of (1,1,1). Because of the normalization constraint, the third variable (not shown) is
given byθ3 = 1−θ1−θ2.

prior, (wi = 1), does allow reduction, and yields marginals and estimates that are simple
averages over those found for each~n in~nN,M, see [4] for details.

To illustrate the kind of posterior density generated by this type of problem, we con-
sider the simpler case of a 3 sided die with the faces having 1,2 and 3 spots respectively,
and withN = 60 andM (total number of spots) = 150. This data gives a sample mean
spot number of 2.5 per throw. In the limit ofN→∞, the following two constraints apply:

θ1 +θ2 +θ3 = 1, θ1 +2θ2 +3θ3 = 2.5, (18)

leaving only one free variable (e.g.θ3). For finiteN, the normalization constraint implies
that there are two degrees of freedom–e.g. (θ1,θ2)–and the resulting posterior density for
N = 60 and prior weights = 1 is shown in Fig. 2 for these variables. Note that this density
forms a ridge along the line that is the solution to the constraint equations (18). The end
points of this line are: (0,1/2,<1/2>) and (1/4,0,<3/4>), where the density goes to zero.

This example illustrates a general property of Bayesian inference applied to examples
of this kind–the posterior density is concentrated around the subspace defined by the
constraints, and becomes increasingly concentrated in that subspace asN→∞. However,
within this subspace, the only information comes from the priors on the parameters–i.e.,
asN→∞, the data increasingly exclude parts of the total~θ space, but say nothing about
the distribution within the allowed space.

Fig. 2 also illustrates another interesting property of this type of problem–that the
standard estimators give misleading answers! For example, the maximum likelihood
(ML) point is the end point (0,1/2,<1/2>). This particular set ofθ values is the single
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most likely set to give the resultM/N = 2.5, yet the posterior density is minimal at this
point! This apparently contradictory result comes about because other allowed points in
the neighborhood of the ML point have much lower relative probability of giving the
observedM/N, so the probabilitydensityof the neighborhood is small. Also, for this
example, the maximum a posteriori (MAP) point may seem a better estimator, because
the posterior density in Fig. 2 has a clear peak. However, the MAP estimate is not as
good as it seems. This is because even though there is a peak along the constraint
line, this does not take into account the width of the posterior densityorthogonal to
the constraint line. In fact, the width is minimal where the the peak is maximal, making
the total volume of the density (integrated over the orthogonal dimension(s)) relatively
flat. In the limit N → ∞ this volumetric measure does not become concentrated around
any particular point, and is only informed by the prior density, not the constraints (in the
allowed subspace). The posterior means estimate, however, gives the best estimate for
the probability of the next throw, as explained above.

The Bayesian Analysis of Example 3

In this example, there is a database of kangaroos, where there are four attributes
for each kangaroo (handedness, beer-drinking, state-of-origin and color) which take
on one of (2, 2, 7, 3) possible values respectively–e.g. a particular kangaroo might be
right-handed, non-beer-drinking, Tasmanian and grey. This example is a generalization
of that discussed in [5]. This data can be tabulated in a 4-dimensional array called a
contingency table. In this example, we have a 4-dimensional contingency table with
a total of 2x2x7x3 = 84 cells, where each cell contains the number of cases with the
corresponding set of attribute values. It is always possible to sum rows or columns in a
contingency table to produce marginal values (so called because these totals are written
in the margins of the table). An example of a first order marginal is the total number of
grey kangaroos, regardless of the other attributes (handedness etc.). This marginal can
be found by summing over all the other attributes while holding the color attribute fixed
at “grey”. A second order marginal, for example, is the number of non-beer-drinking,
left-handed kangaroos, found by summing over the other attributes. The zeroth order
marginal is just the total number of observed kangaroos,N.

If we are given counts forall the n-dimensional cells in the contingency table, our goal
is to use Bayes’ theorem to find the posterior distribution on the full joint probability of
all cells. These represent the true (but unknown) probability that a random case would
fall into the corresponding cell. These cell probabilities are represented byθi, j,k,l , where
i, j,k, l is the value of the 1st., 2nd., 3rd., and 4th. attribute respectively. For example,
θ1,2,7,3 is the probability that a kangaroo is right-handed, beer-drinking, from the state
of Victoria and is brown. The cell data consists of allni, j,k,l s–i.e. the observed number
of kangaroos with attribute valuesi, j,k, l for all possible combinations of values.

The situation in this example is the same as for example 1 above, where for each
face probability,θi , we had the observed number of occurrences of theith face (ni)–
i.e. the dice example is just a one dimensional contingency table! Because of this
correspondence, the Bayesian analysis of example 3 is essentially the same as example
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1. In particular, the likelihood is just the multinomial distribution, given by:

P(~n|~θ, I) =
N!

∏i, j,k,l ni, j,k,l !
∏

i, j,k,l

θni, j,k,l
i, j,k.l (19)

N = ∑
i, j,k,l

ni, j,k,l , ∀{i, j,k, l}, ni, j,k.l ≥ 0

If we again assume a Dirichlet conjugate prior probability distribution on theθis, we get
the joint posterior distribution given by:

p(~n,~θ |~w, I) (20)

=
N!

∏i, j,k,l ni, j,k,l !
Γ(W))

∏i, j,k,l Γ(wi, j,k,l )
∏

i, j,k,l

θni, j,k,l +wi, j,k,l−1
i, j,k,l

× δ( ∑
i, j,k,l

θi, j,k,l −1), (21)

W ≡
k

∑
i, j,k,l=1

wi , ∀i, j,k, l , wi > 0

Examination of the Bayesian solution shows that forN large enough, so that there
is a significant number of observations in every cell, the posterior density for each
cell is strongly peaked around the empirical mean valueni, j,k,l/N, and asymptotically
approaches a delta function asN goes to∞. In other words, theni, j,k,l s, are sufficient
statistics for theθi, j,k,l s, so that with increasingN, the estimated mean probabilities
approach the true cell probabilities.

This example reveals a fundamental problem in statistics. Even for just the four
attributes in this example, there are 84 cells in the full joint space, requiring many
times that number of samples to get reasonable estimates for each cell. Since the total
number of cells is the product of the sizes of all the attributes, and this number thus
grows exponentially with the number of attributes, an extraordinary number of samples
is required to estimate any particular probability with reasonable accuracy. One way
to avoid this combinatorial dilemma is to make additional “independence” assumptions
about attribute interactions, and this is exactly what MaxEnt or graphical models do, as
explained below.

A more complex situation arises if instead of giving all the cell totals, only some of the
marginals (andN) are given. Generally, the given marginal information is not sufficient
to determine all theni, j.k,l s, so we have an underdetermined situation. The Bayesian
analysis of this example is essentially identical to that of example 2. Each given marginal
is a linear constraint on the possibleni, j.k,l s. For example, if someni, j is given, then the
possibleni, j.k,l must obey the linear equation:ni, j = ∑k,l ni, j.k,l . The given marginals are
usually not sufficient to uniquely constrain theni, j.k,l s, so there are many possible sets
of ni, j.k,l s that satisfy these marginal constraints. The likelihood of each such set is given
by the multinomial equation (19). The likelihood of the set of given marginals is then
found by summing the likelihoods (19) of all sets ofni, j.k,l s satisfying the marginals, in
analogy to equation (13). Bayes rule can then be applied to this summed likelihood and
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a prior overθi, j,k,l s (e.g. the Dirichlet prior) to give a posterior over theθi, j,k,l s, given the
marginals. These calculations can be done exactly for smallN, but otherwise are very
messy.

As for example 2, the result of this analysis is that forN → ∞, the posterior joint pdf
on theθi, j,k,l s is just the prior pdf in the subspace defined by the marginal constraints.
That is, the constraints restrict the posterior pdf to the allowed subspace, but do not
give any information on the distribution within this subspace. Only the prior density
gives information in the subspace. For finiteN, any~θ consistent with the normalizing
constraint∑i, j,k,l θi, j,k,l = 1 is possible, but the posterior density is concentrated around
the subspace defined by the given empirical marginal constraints, such as:∑k,l θi, j,k,l =
ni, j/N.

Thus we conclude that when only some marginal information is given, the Bayesian
approach to contingency table analysis concentrates the joint posterior pdfs for~θ around
the subspace defined by the empirical marginal constraints, but the prior on~θ is the only
source of information within this subspace. This is not surprising, since a Bayesian anal-
ysis only reflects the information put into it, in this case, the given marginal information
and the priors on~θ.

THE MAXIMUM ENTROPY SOLUTION

The Classic MaxEnt Solution (CME)

The principle of Maximum Entropy (MaxEnt) is a method for using constraint in-
formation to find a set of point probability values,~P, that assumes the least (Shannon)
information consistent with the given constraints. When the given constraints are insuf-
ficient to uniquely constrain~P to particular point values, MaxEnt picks out the unique
distribution that satisfies all the constraints and also maximizes the entropy.

In the case of a finite set ofI mutually exclusive and exhaustive events, described by
discrete probabilitiesPi , the entropy is defined as:

H(~P) =−
i=I

∑
i=1

Pi ×LogPi . (22)

Given a set ofJ independent linear constraints, including the normalization (1), each of
the form~A j ·~P= D j , with J < I , the maximum entropy distribution may be found by the
following algorithm [3]: define the partition function:

Z(~λ)≡
I

∑
i

exp(−
J

∑
j

λ j A ji ), (23)

with the Lagrange multipliers~λ determined by the set ofJ simultaneous equations:

∂
∂λ j

log(Z(~λ))+D j = 0. (24)

On The Relationship between Bayesian and Maximum Entropy Inference September 21, 2004 11



Then
Hmax = log(Z(~λ))+~λ ·~D, (25)

and the corresponding probability distribution is:

Pi = Z(~λ)
−1

exp(−
J

∑
j

λ j A ji ) = Z(~λ)
−1

∏
j

exp(−λ j A ji ). (26)

Explicit solutions for the dice case are given in [3]. These CME values are different
from the MAP, ML and Posterior Mean estimates, reflecting the different assumptions
built-in to each estimator.

CME for Case 3

In this example, we are given marginal constraints on a four dimensional contingency
table, and we wish to find the CME distribution,Pi, j,k,l , subject to the constraints.
Note that the CME goal is to find a set of point probabilities, not a joint pdf over the
parameters,~P. An example of a first order marginal constraint is:

∑
j,k,l

Pi, j,k,l = Pi = ni/N (27)

Note that here we have used the observed marginal frequencyni/N as the exact value for
the marginal constraint. Clearly this is an approximation, referred to as the “constraint
rule" in [4, 6]. We remove this approximation in our generalized MaxEnt approach
(GME) below, where we translate uncertainty about the true value of the constraints
into uncertainty over the MaxEnt values.

Also, note that the exact zeroth order marginal constraint always applies, i.e.

∑
i, j,k,l

Pi, j,k,l = 1. (28)

If, for example, we are given the first order marginals on each of the attributes, the
CME solution is:

Pi, j,k,l = PiPjPkPl ; (29)

i.e., the CME solution is just the marginal independence solution. This CME solution
says that if we are told that a kangaroo is left-handed, for example, this tells us nothing
about whether it is also a beer-drinker or from Tasmania, in accord with intuition.

If we are given all the first order marginals and the following second order marginals:
Pi, j ,Pj,k,Pk,l ; then the CME solution is:

Pi, j,k,l =
Pi, jPj,kPk,l

PjPk
, (30)

which can be rearranged into:

Pi, j,k,l = PiP( j|i)P(k| j)P(l |k), (31)



whereP(x|y) is the conditional probability ofx giveny. This is an example of conditional
independence, where thekth attribute is independent of theith attribute givenj. In other
words, thekth attribute only depends on theith attribute indirectly through attributej.
Similarly, thel th attribute only depends on theith attribute indirectly through attributes
j andk.

If we are givenPi,l in addition to the above second order marginal (so that the
constraints form a cycle), there is no closed form CME solution or corresponding
independence model! However, it is always possible to find a numeric CME solution for
any set of consistent constraints. An efficient method for computing CME values for sets
of constraints is given in [7]. Generally, CME calculations are efficient if the constraints
form a tree-like (hyper)graph, allowing a factorization of the joint probability.

The above examples show that CME gives independence or conditional independence
results when the given constraints have a tree-like dependence, but CME is ageneral
principle of independenceas it always returns a result for any consistent set of con-
straints regardless of whether a factorized product form exists or not. The connection
between CME and independence (product) forms, such as (29) and (30) is clear from
the product form of CME shown in equation (26). It is this generalized independence
property that makes MaxEnt inference a powerful tool of statistical inference, as show
below.

Generalized MaxEnt

Equations (22)–(26) show that the maximum entropy point probabilitiesPi are afunc-
tion of the constraint valuesD j . If theseD js are estimated from a sample, then Bayes
implies that our knowledge of their values is expressed as pdfs (typically Gaussians),
whose width deceases with increasing sample size. Using the Jacobian of the function
relating thePis to theD js, the joint posterior pdf on theD js can in principle be trans-
formed into a joint pdf on thePis. We call this mapping of uncertainty in the constraint
values into uncertainty in the MaxEnt values (expressed as pdfs) the Generalized prin-
ciple of Maximum Entropy (GME). We have not previously seen this generalization in
the literature, but it is a direct result of applying probability theory to the situation. Note
that the normalization constraint (1) is true by definition, so there is no uncertainty asso-
ciated with its value. Also, in the limit ofN→∞, the constraint values are given exactly,
so GME becomes the same as CME in this case.

Because GME generates a pdf over theθis, it can be compared to the results of
a Bayesian inductive inference, such as equation (6). Jaynes, [2], has claimed that
Bayesian and MaxEnt analyses cannot be compared because they operate on different
spaces. We have shown above that because GME returns a joint pdf over~θ, this output
can be directly compared to a joint Bayesian posterior pdf over~θ. Also, Bayesian
predictive inference–e.g., equation (11)–can be compared directly with CME values
(point probabilities). For the dice example 2, the GME pdfs are peaked around the CME
values, and generally are very different from the Bayesian posterior pdfs, which depend
only on the prior pdfs in the constrained subspace. The difference between the Bayesian
and GME pdfs is not surprising, because these analyses make different assumptions. The
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Bayesian analysis does not make any independence or completeness assumptions, while
GME does.

MaxEnt analysis (both CME and GME) only uses the constraint information (priors
are ignored), and makes a strongcompletenessassumption. That is, MaxEnt assumes
that the given constraints are theonly ones that apply. Also, MaxEnt implicitly assumes
independence of components, unless dependencies are explicitly given as constraints. If
the current MaxEnt predictions do not agree with observations, this is a signal that the
current constraints are incomplete, and the differences can suggest missing constraints.
We call searching for additional constraints by testing the MaxEnt predictions of the
current constraint set against observations the method of Maximum Entropy Inference
(MEI). MEI expands the constraint set if significant deviations are detected4.

COMPARISON OF BAYESIAN AND MAXENT INFERENCE (MEI)

MEI is a method of inductive inference comparable to Bayesian inductive inference.
Because MEI makes stronger assumptions than Bayes, at any stage it’s predictions can
be wrong. In Bayesian inference, on the other hand, the posterior only differs from the
prior is the evidence in the data warrants the change (no backtracking). Also, MEI is not
incremental. In MEI, discovery of a new constraint invalidates previous inferences–i.e.
previous MEI results are in error, and cannot be used as priors for a new calculation,
as done in Bayesian inference. Also, if there is reason for believing that the current
constraint set is incomplete, there is no good reason for believing the current MaxEnt
predictions. In particular, in the dice case 2, MaxEnt predictions based on the mean value
and normalizing constraint are likely to be wrong, because these constraints are unlikely
to be complete. In view of these differences, Bayesian inductive inference generally
seems superior to MEI, because it does not assume any information not explicitly given.
For small problems, we believe this to be true, but for larger problems, independence
assumptions areessential, as explained below. Since MaxEnt is a general principle
of independence, it is a convenient method for implicitly introducing independence
consistent with the given constraints.

For contingency tables with a large number of attributes, the Bayesian analysis de-
veloped above is essentially useless, because there will rarely be enough cases to give
good statistics for every cell. This is a direct consequence of our Bayesian analysis not
using any more information than the prior on~θ and the cell counts. MEI, by compari-
son, implicitly makes strong independence assumptions, and so is able to provide strong
predictions for the cell probabilities, even when the given marginals are far too few to
uniquely constrain them. Among all possible methods for assigning probabilities to the
cells, MaxEnt assumes the least additional information, and this corresponds to making
generalized independence assumptions. However, MaxEnt, even GME, is still assuming
far more information than given in the statement of the problem. In particular, MaxEnt

4 In principle, the correct approach is weight a constraint according to the probability that it differs
significantly from the current MaxEnt expectation, rather than an all or nothing inclusion. However, in
practice this refinement has little effect on the numerical predictions
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amounts to a very strong prior belief in independence, given the known dependencies
(constraints). MaxEnt also assumes that the given constraints (dependencies) are the
only ones that are operating–i.e. the completeness assumption. The use of the “Null Hy-
pothesis" as the reference standard in classical statistics is an example of implicitly using
a very strong prior on independence!

It is common practice in Bayesian analysis of contingency table data to assume a prior
independence model, known in the literature as graphical models (see [8] for details).
These graphical models amount to anexplicit assertion of what dependencies (and in-
dependencies) exist in the domain through the form of the likelihood function. In some
cases, a MaxEnt joint distribution, such as equation 30), has the same form as an as-
sumed graphical model, and sometimes not. In particular, the causal interpretation of
some graphical models differ from MaxEnt with the same constraints. This is because
causality assumes more information than independence. Also, the number of marginals
needed to parameterize a graphical model is usually fixed by the assumed model struc-
ture, whereas MaxEnt produces a joint probability using whatever marginals are given,
and so is less demanding of information. Even when the graphical models are learned
from the data itself, there is no guarantee that the learned structure is complete, as for
MEI also. In summary, inductive inference in large domains requires independence as-
sumptions. These assumptions are built into MaxEnt, but must be inserted explicitly
in Bayesian inference using dependency models, such as graphical models. If there is
strong structure in a domain, then both MEI and Bayesian graphical models will find
it. However, generally the structure learned by the two methods can differ, although the
predictions from the different methods tend to be very close in practice. The differences
arise primarily because MaxEnt does not use prior information, whereas Bayesian infer-
ence does.

DISCUSSION

A major question arising out of the above is: “Why does making such strong indepen-
dence assumptions work in practice?" Our answer to this question is mostly speculative.
Firstly, the world we live inis largely independent! What is happening in this room is
nearly independent of what is happening in the next room. In principle, all observable
attributes can depend on all others, but in practice, most observables depend only on a
few causes (observed or not). MEI applied to contingency tables works because a small
subset of the possible marginalsdo typically capture the real information in data sets we
typically investigate. Any initially missing marginal constraints are discovered during
MEI or similar graphical model search. More importantly, any statistical or scientific
analysis implicitly assumes that any attributes not explicitly considered are irrelevant–
i.e. independent of the ones considered. In other words, independence assumptions must
be invoked merely to frame a problem! At the other extreme, in a world in which ev-
erything strongly depends on everything else, inference is impossible. This is partly
because probabilistic inference becomes computationally intractable, but also because
the observer is part of the system, and so the act of doing inference changes the system,
thus creating a kind of Heisenberg uncertainty.
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The second reason independence assumptions work well for contingency table anal-
ysis is more subtle. Marginal constraints, such as equation (27), are constraints on a
subset of the cell parametersPi, j,k,l , but notarbitrary subsets. Such marginal constraints
represent probabilities of the corresponding attribute(s) value(s), not some meaningless
mixture of of values drawn from many attributes. In other words, out of all the pos-
sible linear constraints we could have imposed, the ones we actually test correspond
to meaningful observable combinations. This selective testing of possible constraints is
important prior knowledge related to our causal understanding of the world. This is part
of the reason that the relatively few constraints imposed in a MaxEnt contingency table
analysis seem to capture all or nearly all of the relevant information. More generally, it
is our causal world models that provide extremely strong priors on what dependencies
exist, with everything else assumed (conditionally) independent. MEI is a good tool for
finding new dependencies (constraints), and generating predictions based on the known
dependencies, while assuming independence for the rest. However, in using MEI, the
possible incompleteness of the current constraints and the corresponding inaccuracy of
the predictions should be kept in mind.

A more fundamental question is whether the world is really largely independent, or
do we just assume it to be so? Our current understanding of physics indicates that causal
propagation of effects tend to rapidly die out because of dilution–both light and sound
spread out, free energy degrades to heat and the universe expands. We speculate that
this dilution effect is the basic reason for the quasi-independence/causal structure of the
world we live in, and so is the reason we can make useful predictions.

Other authors have examined the relation between MaxEnt and Bayes, and have come
to different conclusions than ours. In particular, Jaynes [9], makes the claim that these
two methods of inference are complementary, and in particular, MaxEnt can be used
to generate priors for a subsequent Bayesian inference. We believe otherwise, because
we have shown that the two methods of inference make fundamentally different as-
sumptions. More particularly, the pdfs produced by GME incorporate the strong prior
assumptions of generalized independence and constraint completeness. These assump-
tions produce GME pdfs that are concentrated around CME values (based on empirical
constraints), and become more concentrated with largerN (see [3] for details). As a re-
sult, it would take an extraordinary amount of data to shift away from these pdfs in a
Bayesian update if the completeness assumption assumed in GME is incorrect. Because
CME produces point probabilities, not pdfs, they are useless as Bayesian priors, because
no amount of data in a Bayesian update can change them.

SUMMARY

We have shown that it is possible to directly compare the results of MaxEnt and Bayesian
inference using the same information, despite previous claims to the contrary, and that
the results are different, reflecting the different assumptions built into the different meth-
ods. To correctly apply MaxEnt to situations where the problem constraint values are
estimated from data, rather than being given exactly, we generalize the the standard
MaxEnt framework (GME). GME maps the uncertainty in the constraint values (rep-
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resented as pdfs) into a pdf over the model parameter space. Classic MaxEnt (CME)
only produces point probabilities in this space, which cannot be compared to posterior
probability pdfs.

Both GME and CME make strong assumptions about independence through maxi-
mization of the entropy, subject to the given constraints. Both also implicitly assume that
the given constraints are theonly constraints that apply (the completeness assumption).
Bayesian inductive inference, on the other hand, does not assume any more information
than the priors and given data within the model space defined by the likelihood function.
Independence assumptions can be inserted into a Bayesian analysis by an appropriately
factorized likelihood, so that in some cases the Bayesian and GME results are very simi-
lar. Since GME does not use a prior distribution, they cannot be the same. We also show
by examples that common probability estimators give different results, reflecting their
different assumptions.
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